Bakker, T., van Hoof, H., & Welling, M. (2023). Learning Objective-Specific Active Learning Strategies with Attentive Neural Processes. In D. Koutra, C. Plant, M. Gomez Rodriguez, E. Baralis, & F. Bonchi (Eds.), Machine Learning and Knowledge Discovery in Databases : Research Track : European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023 : proceedings (Vol. I, pp. 3-19). (Lecture Notes in Computer Science; Vol. 14169), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.48550/arXiv.2309.05477, https://doi.org/10.1007/978-3-031-43412-9_1[details]
Bondesan, R., Gavves, E., Oh, C., & Welling, M. (2023). Batch Bayesian Optimization on Permutations using Acquisition Weighted Kernels. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), 36th Conference on Neural Information Processing Systems (NeurIPS 2022): New Orleans, Louisiana, USA, 28 November-9 December 2022 (Vol. 10, pp. 6843-6858). (Advances in Neural Information Processing Systems; Vol. 35). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper_files/paper/2022/hash/2d779258dd899505b56f237de66ae470-Abstract-Conference.html[details]
Löwe, S., Lippe, P., Locatello, F., & Welling, M. (in press). Rotating Features for Object Discovery. In 37th Conference on Neural Information Processing Systems (NeurIPS 2023) (Advances in Neural Information Processing Systems; Vol. 36). Neural Information Processing Systems Foundation. https://doi.org/10.48550/ARXIV.2306.00600
Romijnders, R., Asano, Y. M., Louizos, C., & Welling, M. (2023). No time to waste: practical statistical contact tracing with few low-bit messages. Proceedings of Machine Learning Research, 206, 7943-7960. https://proceedings.mlr.press/v206/romijnders23a.html[details]
Forre, P., Hoogeboom, E., Jaini, P., Nielsen, D., & Welling, M. (2022). Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. Wortman Vaughan (Eds.), 35th Conference on Neural Information Processing Systems (NeurIPS 2021) : online, 6-14 December 2021 (Vol. 15, pp. 12454-12465). (Advances in Neural Information Processing Systems; Vol. 34). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2021/hash/67d96d458abdef21792e6d8e590244e7-Abstract.html[details]
Kadambi, S., Behboodi, A., Soriaga, J. B., Welling, M., Amiri, R., Yerramalli, S., & Yoo, T. (2022). Neural RF SLAM for unsupervised positioning and mapping with channel state information. In ICC 2022 - IEEE International Conference on Communications: Seoul, South Korea, 16-20 May 2022 (pp. 3238-3244). IEEE. https://doi.org/10.1109/ICC45855.2022.9838367[details]
Keller, T. A., & Welling, M. (2022). Topographic VAEs learn Equivariant Capsules. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. Wortman Vaughan (Eds.), 35th Conference on Neural Information Processing Systems (NeurIPS 2021) : online, 6-14 December 2021 (Vol. 34, pp. 28585-28597). (Advances in Neural Information Processing Systems; Vol. 34). Neural Information Processing Systems Foundation. https://doi.org/10.48550/arXiv.2109.01394[details]
Kool, W., van Hoof, H., Gromicho, J., & Welling, M. (2022). Deep Policy Dynamic Programming for Vehicle Routing Problems. In P. Schaus (Ed.), Integration of Constraint Programming, Artificial Intelligence, and Operations Research: 19th International Conference, CPAIOR 2022, Los Angeles, CA, USA, June 20-23, 2022 : proceedings (pp. 190–213). (Lecture Notes in Computer Science; Vol. 13292). Springer. https://doi.org/10.48550/arXiv.2102.11756, https://doi.org/10.1007/978-3-031-08011-1_14[details]
van der Pol, E., van Hoof, H., Oliehoek, F., & Welling, M. (2022). Multi-Agent MDP Homomorphic Networks. In Proceedings of the International Conference on Learning Representations OpenReview. https://doi.org/10.48550/arXiv.2110.04495
2021
Bakker, T., Van Hoof, H., & Welling, M. (2021). Experimental design for MRI by greedy policy search. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 23, pp. 18954-18966). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/daed210307f1dbc6f1dd9551408d999f-Abstract.html[details]
De Haan, P., Cohen, T. S., & Welling, M. (2021). Natural Graph Networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 5, pp. 3636-3646). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/2517756c5a9be6ac007fe9bb7fb92611-Abstract.html[details]
Fuchs, F., Worrall, D., Fischer, V., & Welling, M. (2021). SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 3, pp. 1970-1981). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/15231a7ce4ba789d13b722cc5c955834-Abstract.html[details]
Hoogeboom, E., Garcia Satorras, V., Tomczak, J., & Welling, M. (2021). The Convolution Exponential and Generalized Sylvester Flows. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 22, pp. 18249-18248). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/d3f06eef2ffac7faadbe3055a70682ac-Abstract.html[details]
Hu, S., Fridgeirsson, E. A., van Wingen, G., & Welling, M. (2021). Transformer-Based Deep Survival Analysis. Proceedings of Machine Learning Research, 146, 132-148. https://proceedings.mlr.press/v146/hu21a.html[details]
Hu, S., Pezzotti, N., & Welling, M. (2021). Learning to Predict Error for MRI Reconstruction. In M. de Bruijne, P. C. Cattin, S. Cotin, N. Padoy, S. Speidel, Y. Zheng, & C. Essert (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021 : proceedings (Vol. III, pp. 604-613). (Lecture Notes in Computer Science; Vol. 12903). Springer. Advance online publication. https://doi.org/10.1007/978-3-030-87199-4_57[details]
Keller, T. A., & Welling, M. (2021). Predictive Coding with Topographic Variational Autoencoders. In 2021 IEEE/CVF International Conference on Computer Vision Workshops: proceedings : ICCVW 2021 : 11-17 October 2021, virtual event (pp. 1086-1091). IEEE Computer Society. https://doi.org/10.1109/ICCVW54120.2021.00127[details]
Nielsen, D., Jaini, P., Hoogeboom, E., Winther, O., & Welling, M. (2021). SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 16, pp. 12685-12696). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/9578a63fbe545bd82cc5bbe749636af1-Abstract.html[details]
Ottenhoff, M. C., Ramos, L. A., Potters, W., Hu, S., Thomas, R., Elbers, P., Welling, M., Simsek, S., Wiersinga, W. J., van Wingen, G. A., & The Dutch COVID-PREDICT research group (2021). Predicting mortality of individual patients with COVID-19: a multicentre Dutch cohort. BMJ Open, 11(7), Article e047347. https://doi.org/10.1136/bmjopen-2020-047347[details]
Van Der Pol, E., Worrall, D., Van Hoof, H., Oliehoek, F., & Welling, M. (2021). MDP homomorphic networks: Group symmetries in reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 6, pp. 4199-4210). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/2be5f9c2e3620eb73c2972d7552b6cb5-Abstract.html[details]
Akata, Z., Balliet, D., de Rijke, M., Dignum, F., Dignum, V., Eiben, G., Fokkens, A., Grossi, D., Hindriks, K., Hoos, H., Hung, H., Jonker, C., Monz, C., Neerincx, M., Oliehoek, F., Prakken, H., Schlobach, S., van der Gaag, L., van Harmelen, F., ... Welling, M. (2020). A Research Agenda for Hybrid Intelligence: Augmenting Human Intellect With Collaborative, Adaptive, Responsible, and Explainable Artificial Intelligence. Computer, 53(8), 18-28. https://doi.org/10.1109/MC.2020.2996587[details]
Hoogeboom, E., Peters, J. W. T., van den Berg, R., & Welling, M. (2020). Integer Discrete Flows and Lossless Compression. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), 32nd Conference on Neural Information Processing Systems (NeurIPS 2019): Vancouver, Canada, 8-14 December 2019 (Vol. 16, pp. 12114-12124). (Advances in Neural Information Processing Systems; Vol. 32). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2019/hash/9e9a30b74c49d07d8150c8c83b1ccf07-Abstract.html[details]
Kipf, T. N., van der Pol, E. E., & Welling, M. (2020). Contrastive Learning of Structured World Models. In International Conference on Learning Representations https://openreview.net/forum?id=H1gax6VtDB
Kool, W., van Hoof, H., & Welling, M. (2020). Estimating Gradients for Discrete Random Variables by Sampling without Replacement. In International Conference on Learning Representations
Oh, C., Tomczak, J. M., Gavves, E., & Welling, M. (2020). Combinatorial Bayesian Optimization using the Graph Cartesian Product. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), 32nd Conference on Neural Information Processing Systems (NeurIPS 2019): Vancouver, Canada, 8-14 December 2019 (Vol. 4, pp. 2891-2901). (Advances in Neural Information Processing Systems; Vol. 32). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2019/hash/2cb6b10338a7fc4117a80da24b582060-Abstract.html[details]
Shang, W., van der Wal, D., van Hoof, H., & Welling, M. (2020). Stochastic Activation Actor Critic Methods. In U. Brefeld, E. Fromont, A. Hotho, A. Knobbe, M. Maathuis, & C. Robardet (Eds.), Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019 : proceedings (Vol. III, pp. 103-117). (Lecture Notes in Computer Science; Vol. 11908), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-030-46133-1_7[details]
Worrall, D., & Welling, M. (2020). Deep Scale-spaces: Equivariance Over Scale. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), 32nd Conference on Neural Information Processing Systems (NeurIPS 2019): Vancouver, Canada, 8-14 December 2019 (Vol. 10, pp. 7334-7346). (Advances in Neural Information Processing Systems; Vol. 32). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2019/hash/f04cd7399b2b0128970efb6d20b5c551-Abstract.html[details]
van der Pol, E., Kipf, T., Oliehoek, F. A., & Welling, M. (2020). Plannable Approximations to MDP Homomorphisms: Equivariance under Actions. In AAMAS'20: proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems : May 9-13, 2020, Auckland, New Zealand (pp. 1431–1439). International Foundation for Autonomous Agents and Multiagent Systems. https://dl.acm.org/doi/10.5555/3398761.3398926[details]
2019
Atanov, A., Ashukha, A., Struminsky, K., Vetrov, D., & Welling, M. (2019). The Deep Weight Prior. In ICLR 2019: International Conference on Learning Representations : New Orleans, Louisiana, United States, May 6-May 9, 2019 OpenReview. https://arxiv.org/abs/1810.06943[details]
Bertone, G., Deisenroth, M. P., Kim, J. S., Liem, S., Ruiz de Austri, R., & Welling, M. (2019). Accelerating the BSM interpretation of LHC data with machine learning. Physics of the Dark Universe, 24, Article 100293. https://doi.org/10.1016/j.dark.2019.100293[details]
Cohen, T. S., Weiler, M., Kicanaoglu, B., & Welling, M. (2019). Gauge Equivariant Convolutional Networks and the Icosahedral CNN. Proceedings of Machine Learning Research, 97, 1321-1330. http://proceedings.mlr.press/v97/cohen19d.html[details]
Hu, S., Worrall, D., Knegt, S., Veeling, B., Huisman, H., & Welling, M. (2019). Supervised Uncertainty Quantification for Segmentation with Multiple Annotations. In D. Shen, T. Liu, T. M. Peters, L. H. Staib, C. Essert, S. Zhou, P-T. Yap, & A. Khan (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019 : proceedings (Vol. 2, pp. 137-145). (Lecture Notes in Computer Science; Vol. 11765). Springer. https://doi.org/10.1007/978-3-030-32245-8_16[details]
Kool, W., van Hoof, H., & Welling, M. (2019). Attention, learn to solve routing problems! In ICLR 2019: International Conference on Learning Representations : New Orleans, Louisiana, United States, May 6-May 9, 2019 OpenReview. https://arxiv.org/abs/1803.08475[details]
Kool, W., van Hoof, H., & Welling, M. (2019). Buy 4 REINFORCE Samples, Get a Baseline for Free! In Deep RL Meets Structured Prediction Workshop at ICLR https://openreview.net/forum?id=r1lgTGL5DE
Kool, W., van Hoof, H., & Welling, M. (2019). Stochastic Beams and Where To Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement. Proceedings of Machine Learning Research, 97, 3499-3508. http://proceedings.mlr.press/v97/kool19a.html[details]
Louizos, C., Reisser, M., Blankevoort, T., Gavves, E., & Welling, M. (2019). Relaxed Quantization for Discretized Neural Networks. In ICLR 2019: International Conference on Learning Representations : New Orleans, Louisiana, United States, May 6-May 9, 2019 OpenReview. https://openreview.net/forum?id=HkxjYoCqKX[details]
O'Connor, P., Gavves, E., & Welling, M. (2019). Initialized Equilibrium Propagation for Backprop-Free Training. In ICLR 2019: International Conference on Learning Representations : New Orleans, Louisiana, United States, May 6-May 9, 2019 OpenReview. Advance online publication. https://openreview.net/forum?id=B1GMDsR5tm[details]
Patrini, G., van den Berg, R., Forré, P., Carioni, M., Bhargav, S., Welling, M., Genewein, T., & Nielsen, F. (2019). Sinkhorn AutoEncoders. In A. Globerson, & R. Silva (Eds.), Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence: UAI 2019, Tel Aviv, Israel, July 22-25, 2019 Article 253 AUAI Press. https://arxiv.org/abs/1810.01118[details]
Weiler, M., Boomsma, W., Geiger, M., Welling, M., & Cohen, T. (2019). 3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), 32nd Conference on Neural Information Processing Systems 2018 : Montreal, Canada, 3-8 December 2018 (Vol. 15, pp. 10381-10392). (Advances in Neural Information Processing Systems; Vol. 31). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2018/hash/488e4104520c6aab692863cc1dba45af-Abstract.html[details]
Louizos, C., Shalit, U., Mooij, J., Sontag, D., Zemel, R., & Welling, M. (2018). Causal Effect Inference with Deep Latent-Variable Models. In U. von Luxburg, I. Guyon, S. Bengio, H. Wallach, R. Fergus, S. V. N. Vishwanathan, & R. Garnett (Eds.), 31st Conference on Advances in Neural Information Processing Systems (NIPS 2017): Long Beach, California, USA, 4-9 December 2017 (Vol. 10, pp. 6447-6457). (Advances in Neural Information Processing Systems; Vol. 30). Neural Information Processing Systems. https://papers.nips.cc/paper/2017/file/94b5bde6de888ddf9cde6748ad2523d1-Paper.pdf[details]
Louizos, C., Ullrich, K., & Welling, M. (2018). Bayesian Compression for Deep Learning. In U. von Luxburg, I. Guyon, S. Bengio, H. Wallach, R. Fergus, S. V. N. Vishwanathan, & R. Garnett (Eds.), 31st Conference on Advances in Neural Information Processing Systems (NIPS 2017): Long Beach, California, USA, 4-9 December 2017 (Vol. 5, pp. 3289-3299). (Advances in Neural Information Processing Systems; Vol. 30). Neural Information Processing Systems. https://papers.nips.cc/paper/6921-bayesian-compression-for-deep-learning[details]
Louizos, C., Welling, M., & Kingma, D. P. (2018). Learning Sparse Neural Networks through L0 Regularization. In International Conference for Learning Representations
O'Connor, P. E., Gavves, E., & Welling, M. (2018). Initialized Equilibrium Propagation for Backprop-Free Training. In International Conference on Machine Learning: Workshop on Credit Assignment in Deep Learning and Deep Reinforcement Learning
Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R., Titov, I., & Welling, M. (2018). Modeling Relational Data with Graph Convolutional Networks. In A. Gangemi, R. Navigli, M-E. Vidal, P. Hitzler, R. Troncy, L. Hollink, A. Tordai, & M. Alam (Eds.), The Semantic Web: 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018 : proceedings (pp. 593-607). (Lecture Notes in Computer Science; Vol. 10843). Springer. https://doi.org/10.1007/978-3-319-93417-4_38[details]
van den Berg, R., Hasenclever, L., Tomczak, J. M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference. In A. Globerson, & R. Silva (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Thirty-Fourth Concerence (2018) : August 6-10, 2018, Monterey, California, USA (pp. 393-402). AUAI Press. http://auai.org/uai2018/proceedings/papers/156.pdf[details]
Adel, T., Cohen, T., Caan, M., Welling, M., AGEhIV Study Group, & Alzheimer's Disease Neuroimaging Initiative (2017). 3D scattering transforms for disease classification in neuroimaging. NeuroImage: Clinical, 14, 506-517. https://doi.org/10.1016/j.nicl.2017.02.004[details]
Cohen, T. S., Geiger, M., & Welling, M. (2017). Convolutional Networks for Spherical Signals. In NIPS Workshops NIPS.
Eck, A., Zintgraf, L. M., de Groot, E. F. J., de Meij, T. G. J., Cohen, T. S., Savelkoul, P. H. M., Welling, M., & Budding, A. E. (2017). Interpretation of microbiota-based diagnostics by explaining individual classifier decisions. BMC Bioinformatics, 18, Article 441. https://doi.org/10.1186/s12859-017-1843-1[details]
Eck, A., de Groot, E. F. J., de Meij, T. G. J., Welling, M., Savelkoul, P. H. M., & Budding, A. E. (2017). Robust Microbiota-Based Diagnostics for Inflammatory Bowel Disease. Journal of Clinical Microbiology, 55(6), 1720-1732. Advance online publication. https://doi.org/10.1128/JCM.00162-17[details]
Kingma, D., Salimans, T., Josefowicz, R., Chen, X., Sutskever, I., & Welling, M. (2017). Improving Variational Autoencoders with Inverse Autoregressive Flow. In D. D. Lee, U. von Luxburg, R. Garnett, M. Sugiyama, & I. Guyon (Eds.), 30th Annual Conference on Neural Information Processing Systems 2016: Barcelona, Spain, 5-10 December 2016 (Vol. 7, pp. 4743-4751). (Advances in Neural Information Processing Systems; Vol. 29). Curran Associates. https://arxiv.org/abs/1606.04934[details]
Park, M., Foulds, J., Chaudhuri, K., & Welling, M. (2017). DP-EM: Differentially Private Expectation Maximization. Proceedings of Machine Learning Research, 54, 896-904. http://proceedings.mlr.press/v54/park17c.html[details]
Tomczak, J. M., & Welling, M. (2017). Improving Variational Auto-Encoders using convex combination linear Inverse Autoregressive Flow. In Benelearn 2017 Benelearn. https://arxiv.org/pdf/1706.02326.pdf
2016
Chen, Y., & Welling, M. (2016). Herding as a Learning System with Edge-of-Chaos Dynamics. In T. Hazan, G. Papandreou, & D. Tarlow (Eds.), Perturbations, Optimization, and Statistics (pp. 73-125). (Neural Information Processing series). The MIT Press. https://doi.org/10.7551/mitpress/10761.003.0005[details]
Chen, Y., Bornn, L., de Freitas, N., Eskelin, M., Fang, J., & Welling, M. (2016). Herded Gibbs Sampling. Journal of Machine Learning Research, 17, Article 10. http://www.jmlr.org/papers/v17/chen16a.html[details]
El-Helw, I., Hofman, R., Li, W., Ahn, S., Welling, M., & Bal, H. (2016). Scalable Overlapping Community Detection. In 2016 IEEE 30th International Parallel and Distributed Processing Symposium Workshops : IPDPSW 2016: proceedings : 23-27 May 2016, Chicago, Illinois (pp. 1463-1472). IEEE Computer Society. https://doi.org/10.1109/IPDPSW.2016.165[details]
Foulds, J., Geumlek, J., Welling, M., & Chaudhuri, K. R. (2016). On the Theory and Practice of Privacy Preserving Data Analysis. In A. Ihler, & D. Janzing (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Thirty-Second Conference (2016) : June 25-29, 2016, Jersey City, New Jersey, USA (pp. 192-201). Article 45 AUAI Press. http://www.auai.org/uai2016/proceedings/papers/45.pdf[details]
Louizos, C., & Welling, M. (2016). Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors. JMLR Workshop and Conference Proceedings, 48, 1708-1716. http://proceedings.mlr.press/v48/louizos16.html[details]
Louizos, C., Swersky, K., Li, Y., Welling, M., & Zemel, R. (2016). The Variational Fair Autoencoder. In ICLR 2016: International Conference on Learning Representations: May 2-4, 2016, San Juan, Puerto Rico. Accepted papers (Conference Track) Computational and Biological Learning Society. https://arxiv.org/abs/1511.00830[details]
Park, M. J., & Welling, M. (2016). A note on Privacy Preserving Iteratively Reweighted Least Squares. In ICML Workshop on Privacy & Machine Learning https://arxiv.org/abs/1605.07511
Park, M., Foulds, J., Chaudhuri, K., & Welling, M. (2016). Private Topic Modeling. In Private Multi-Party Machine Learning: NIPS 2016 workshop : Barcelona, December 9 : PMPML'16 NIPS. https://arxiv.org/abs/1609.04120[details]
Ahn, S., Korattikara, A., Liu, N., Rajan, S., & Welling, M. (2015). Large-Scale Distributed Bayesian Matrix Factorization using Stochastic Gradient MCMC. In KDD'15: proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: August 10-13, 2015, Sydney, Australia (pp. 9-18). Association for Computing Machinery. https://doi.org/10.1145/2783258.2783373[details]
Chiang, M., Cinquin, A., Paz, A., Meeds, E., Price, C. A., Welling, M., & Cinquin, O. (2015). Control of Caenorhabditis elegans germ-line stem-cell cycling speed meets requirements of design to minimize mutation accumulation. BMC Biology, 13, Article 51. https://doi.org/10.1186/s12915-015-0148-y[details]
Kingma, D. P., Rezende, D. J., Mohamed, S., & Welling, M. (2015). Semi-supervised Learning with Deep Generative Models. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger (Eds.), 28th Annual Conference on Neural Information Processing Systems 2014: December 8-13, 2014, Montreal, Canada (Vol. 4, pp. 3581-3589). (Advances in Neural Information Processing Systems; Vol. 27). Curran. http://papers.nips.cc/paper/5352-semi-supervised-learning-with-deep-generative-models[details]
Kingma, D. P., Salimans, T., & Welling, M. (2015). Variational Dropout and the Local Reparameterization Trick. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), 29th Annual Conference on Neural Information Processing Systems 2015: Montreal, Canada, 7-12 December 2015 (Vol. 3, pp. 2575-2583). (Advances in Neural Information Processing Systems; Vol. 28). Curran Associates. http://papers.nips.cc/paper/5666-variational-dropout-and-the-local-reparameterization-trick[details]
Korattikara, A., Rathod, V., Murphy, K., & Welling, M. (2015). Bayesian Dark Knowledge. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), 29th Annual Conference on Neural Information Processing Systems 2015: Montreal, Canada, 7-12 December 2015 (Vol. 4, pp. 3438-3446). (Advances in Neural Information Processing Systems; Vol. 28). Curran Associates. http://papers.nips.cc/paper/5965-bayesian-dark-knowledge[details]
Meeds, E., & Welling, M. (2015). Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free Inference. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), 29th Annual Conference on Neural Information Processing Systems 2015: Montreal, Canada, 7-12 December 2015 (Vol. 3, pp. 2080-2088). (Advances in Neural Information Processing Systems; Vol. 28). Curran Associates. http://papers.nips.cc/paper/5881-optimization-monte-carlo-efficient-and-embarrassingly-parallel-likelihood-free-inference[details]
Meeds, E., Chiang, M., Lee, M., Cinquin, O., Lowengrub, J., & Welling, M. (2015). POPE: Post Optimization Posterior Evaluation of Likelihood Free Models. BMC Bioinformatics, 16, Article 264. https://doi.org/10.1186/s12859-015-0658-1[details]
Meeds, E., Hendriks, R., Al Faraby, S., Bruntink, M., & Welling, M. (2015). MLitB: Machine Learning in the Browser. PeerJ Computer Science, 1, Article e11. https://doi.org/10.7717/peerj-cs.11[details]
Meeds, E., Leenders, R., & Welling, M. (2015). Hamiltonian ABC. In M. Meila, & T. Heskes (Eds.), Uncertainty in Artificial Intelligence: proceedings of the thirty-first conference (2015): July 12-16, Amsterdam, Netherlands (pp. 582-591). AUAI Press. http://auai.org/uai2015/proceedings/papers/266.pdf[details]
Chen, Y., Gelfand, A. E., & Welling, M. (2014). Herding for Structured Prediction. In S. Nowozin, P. V. Gehler, J. Jancsary, & C. H. Lampert (Eds.), Advanced structured prediction (pp. 187-212). (Neural information processing series). The MIT Press. https://mitpress.mit.edu/books/advanced-structured-prediction[details]
Kingma, D. P., & Welling, M. (2014). Auto-Encoding Variational Bayes. In Conference proceedings: papers accepted to the International Conference on Learning Representations (ICLR) 2014 ArXiv. http://arxiv.org/abs/1312.6114[details]
Kingma, D. P., & Welling, M. (2014). Efficient Gradient-Based Inference through Transformations between Bayes Nets and Neural Nets. JMLR Workshop and Conference Proceedings, 32, 1782-1790. http://jmlr.org/proceedings/papers/v32/kingma14.html[details]
Meeds, E., & Welling, M. (2014). GPS-ABC: Gaussian Process Surrogate Approximate Bayesian Computation. In N. Zhang, & J. Tian (Eds.), Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence: Quebec City, Quebec, Canada: July 23-27, 2014: UAI2014 (pp. 593-602). AUAI Press. http://auai.org//uai2014/proceedings/uai-2014-proceedings.pdf[details]
Bornn, L., Chen, Y., de Freitas, N., Eskelin, M., Fang, J., & Welling, M. (2013). Herded Gibbs Sampling. In International Conference on Learning Representation 2013 ArXiv. http://arxiv.org/abs/1301.4168[details]
Boyles, L., & Welling, M. (2013). The time-marginalized coalescent prior for hierarchical clustering. In P. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), 26th Annual Conference on Neural Information Processing Systems 2012: December 3-6, 2012, Lake Tahoe, Nevada, USA (Vol. 4, pp. 2969-2977). (Advances in Neural Information Processing Systems; Vol. 25). Curran Associates. https://papers.nips.cc/paper/4786-the-time-marginalized-coalescent-prior-for-hierarchical-clustering[details]
Foulds, J., Boyles, L., DuBois, C., Smyth, P., & Welling, M. (2013). Stochastic Collapsed Variational Bayesian Inference for Latent Dirichlet Allocation. In I. S. Dhillon, Y. Koren, R. Ghani, T. E. Senator, P. Bradley, R. Parekh, J. He, R. L. Grossman, & R. Uthurusamy (Eds.), KDD '13: the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: August 11-14, 2013, Chicago, Illinois, USA (pp. 446-454). ACM. https://doi.org/10.1145/2487575.2487697[details]
Korattikara, A., Chen, Y., & Welling, M. (2013). Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget. In 2013 JSM proceedings: papers presented at the Joint Statistical Meetings, Montréal, Québec, Canada, August 3-8, 2013, and other ASA-sponsored conferences [cd-rom] (pp. 236-250). American Statistical Association. https://www.amstat.org/meetings/jsm/2013/proceedings.cfm[details]
Welinder, P., Welling, M., & Perona, P. (2013). A Lazy Man's Approach to Benchmarking: Semisupervised Classifier Evaluation and Recalibration. In Proceedings: 2013 IEEE Conference on Computer Vision and Pattern Recognition: CVPR 2013 : 23-28 June 2013, Portland, Oregon, USA (pp. 3262-3269). IEEE Computer Society, Conference Publishing Services. https://doi.org/10.1109/CVPR.2013.419[details]
Ahn, S., Korattikara, A., & Welling, M. (2012). Bayesian posterior sampling via stochastic gradient Fisher scoring. In J. Langford, & J. Pineau (Eds.), Proceedings of Twenty-Ninth International Conference Machine Learning. - Vol. 2 (pp. 1591-1598). International Machine Learning Society. http://icml.cc/2012/papers/782.pdf[details]
Chen, Y., & Welling, M. (2012). Bayesian structure learning for Markov Random Fields with a spike and slab prior. In N. de Freitas, & K. Murphy (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Twenty-Eight conference (2012): August 15-17, 2012, Catalina Island, CA (pp. 174-184). AUAI Press. http://www.auai.org/uai2012/proceedings.pdf[details]
Gelfand, A. E., & Welling, M. (2012). Generalized belief propagation on tree robust structured region graphs. In K. Murphy, & N. de Freitas (Eds.), Uncertainty in Artificial: proceedings of the Twenty-Eight conference (2012): August 15-17, 2012 Catalina Island, CA (pp. 296-305). AUAI Press. http://www.auai.org/uai2012/proceedings.pdf[details]
Keller, T. A., Peters, J. W. T., Jaini, P., Hoogeboom, E., Forré, P., & Welling, M. (2021). Self Normalizing Flows. Proceedings of Machine Learning Research, 139, 5378-5387. https://arxiv.org/abs/2011.07248[details]
Winkler, C., Worrall, D., Hoogeboom, E., & Welling, M. (2019). Learning Likelihoods with Conditional Normalizing Flows. In ArXiV ArXiv. https://openreview.net/forum?id=rJg3zxBYwH
Welling, M. (2014). When saving all the data captured by the antennas is simply not an option. ASTRON Newsletter.
2013
Welling, M. (2013). Mijn data mogen ze hebben hoor. NRC Opinie.
Welling, M. (2013). Open access wel degelijk belangrijk in economie. NRC Opinie.
2021
Keller, T. A., Gao, Q., & Welling, M. (2021). Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders. Paper presented at 3rd Workshop on Shared Visual Representations in Human and Machine Intelligence of the Neural Information Processing Systems conference. https://arxiv.org/abs/2110.13911
2018
Selvan, R., Kipf, T., Welling, M., Pedersen, J. H., Petersen, J., & de Bruijne, M. (2018). Extraction of Airways using Graph Neural Networks. Poster session presented at Medical Imaging with Deep Learning, Abstract Track (MIDL 2018), .
Hasenclever, L., Tomczak, J. M., van den Berg, R., & Welling, M. (2017). Variational Inference with Orthogonal Normalizing Flows. Paper presented at Bayesian Deep Learning Workshop NIPS 2017, Long Beach, United States. http://bayesiandeeplearning.org/2017/papers/51.pdf[details]
Kipf, T. N., & Welling, M. (2017). Semi-Supervised Classification with Graph Convolutional Networks. Paper presented at 5th International Conference on Learning Representations, Toulon, France. http://arxiv.org/abs/1609.02907
Tomczak, J. M., Ilse, M., & Welling, M. (2017). Deep Learning with Order-invariant Operator for Multi-instance Histopathology Classification. Abstract from Medical Imaging meets NIPS Workshop NIPS 2017, Long Beach, United States. https://doi.org/10.48550/arXiv.1712.00310[details]
Ullrich, K., Meeds, E. W. F., & Welling, M. (2017). Soft Weight-Sharing for Neural Network Compression. Paper presented at 5th International Conference on Learning Representations, Toulon, France. https://arxiv.org/pdf/1702.04008.pdf
2016
Kipf, T. N., & Welling, M. (2016). Variational Graph Auto-Encoders. Paper presented at Bayesian Deep Learning Workshop NIPS 2016, Barcelona, Spain. https://arxiv.org/abs/1611.07308v1
Tomczak, J. M., & Welling, M. (2016). Improving Variational Auto-Encoders using Householder Flow. Paper presented at Bayesian Deep Learning Workshop NIPS 2016, Barcelona, Spain. https://arxiv.org/abs/1611.09630[details]
Welling, M. (2014). Exploiting the Statistics of Learning and Inference. Paper presented at NIPS 2014 Workshop on "Probabilistic Models for Big Data". https://arxiv.org/abs/1402.7025
2013
Meeds, E., & Welling, M. (2013). Inference in Stochastic Biological Systems using Gaussian Process Surrogate ABC. Poster session presented at 2013 NIPS Workshop on Machine Learning in Computational Biology, Lake Tahoe, NV. http://www.mlcb.org/previous/mlcb2014
Mediaoptreden
Welling, M. (20-10-2016). Contribution to magazine ICT & Health. Een pitbull waakt voor het laaghangend fruit.
Welling, M. (01-09-2016). Column FD. Monthly Column in Financieel Dagblad.
Welling, M. (31-05-2016). Interview BNR Radio [Radio]. Interview BNR Radio.
Welling, M. (30-04-2016). En toen ging de computer zelf leren” (door Bennie Mols). Interview NRC.
Miller, B. K. (2024). Machine learning for scientific simulation: Inference and generative models. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Weiler, M. (2024). Equivariant and coordinate independent convolutional networks: A gauge field theory of neural networks. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Wöhlke, J. G. (2024). Reinforcement learning and planning for autonomous agent navigation: With a focus on sparse reward settings. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Hoogeboom, E. (2023). Normalizing flows and diffusion models for discrete and geometric data. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Bongers, S. R. (2022). Causal modeling & dynamical systems: A new perspective on feedback. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Hu, S. (2022). Uncertainty, robustness and safety in artificial intelligence, with applications in healthcare. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Kool, W. (2022). Learning and optimization in combinatorial spaces: With a focus on deep learning for vehicle routing. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Louizos, C. (2022). Probabilistic reasoning for uncertainty & compression in deep learning. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Wang, Q. (2022). Functional representation learning for uncertainty quantification and fast skill transfer. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Shang, W. (2021). Crafting deep learning models for reinforcement learning and computer vision applications. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
O'Connor, P. (2020). Biologically plausible deep learning: Should airplanes flap their wings? [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Shiarlis, K. C. (2019). Detaching the strings: Practical algorithms for Learning from Demonstration. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.