Noteboom, S. H., Kho, E., Galanty, M., Sánchez, C. I., ten Bookum, F. C. P., Veelo, D. P., Vlaar, A. P. J., & van der Ster, B. J. P. (2025). From intensive care monitors to cloud environments: a structured data pipeline for advanced clinical decision support. eBioMedicine, 111, Article 105529. https://doi.org/10.1016/j.ebiom.2024.105529[details]
Galanty, M., Luitse, D., Noteboom, S. H., Croon, P., Vlaar, A. P., Poell, T., Sánchez Gutiérrez, C. I., Blanke, T., & Išgum, I. (2024). Assessing the documentation of publicly available medical image and signal datasets and their impact on bias using the BEAMRAD tool. Scientific Reports, 14, Article 31846. https://doi.org/10.1038/s41598-024-83218-5[details]
Magg, C., ter Wee, M. A., Buijs, G. S., Kievit, A. J., Krap, D. A., Dobbe, J. G. G., Streekstra, G. J., Blankevoort, L., & Sánchez, C. I. (2024). Towards automation in non-invasive measurement of knee implant displacement. In W. Chen, & S. M. Astley (Eds.), Medical Imaging 2024: Computer-Aided Diagnosis: 19–22 February 2024, San Diego, California, United States Article 129270R (Proceedings of SPIE; Vol. 12927), (Progress in Biomedical Optics and Imaging; Vol. 25, No. 51). SPIE. https://doi.org/10.1117/12.3008090[details]
Reinke, A., Tizabi, M. D., Baumgartner, M., Sánchez, C. I., & Metrics Reloaded (2024). Understanding metric-related pitfalls in image analysis validation. Nature Methods, 21(2), 182–194. https://doi.org/10.1038/s41592-023-02150-0[details]
Sogancioglu, E., van Ginneken, B., Behrendt, F., Bengs, M., Schlaefer, A., Radu, M., Xu, D., Sheng, K., Scalzo, F., Marcus, E., Papa, S., Teuwen, J., Scholten, E. T., Schalekamp, S., Hendrix, N., Jacobs, C., Hendrix, W., Sánchez, C., & Murphy, K. (2024). Nodule Detection and Generation on Chest X-Rays: NODE21 Challenge. IEEE Transactions on Medical Imaging, 43(8), 2839–2853. https://doi.org/10.1109/tmi.2024.3382042[details]
Yiasemis, G., Sánchez, C. I., Sonke, J.-J., & Teuwen, J. (2024). On retrospective k-space subsampling schemes for deep MRI reconstruction. Magnetic resonance imaging, 107, 33–46. https://doi.org/10.1016/j.mri.2023.12.012[details]
de Vente, C., Valmaggia, P., Hoyng, C. B., Holz, F. G., Islam, M. M., Klaver, C. C. W., Boon, C. J. F., Schmitz-Valckenberg, S., Tufail, A., Saßmannshausen, M., & Sánchez, C. I. (2024). Generalizable Deep Learning for the Detection of Incomplete and Complete Retinal Pigment Epithelium and Outer Retinal Atrophy: A MACUSTAR Report. Translational vision science & technology, 13(9), Article 11. https://doi.org/10.1167/tvst.13.9.11[details]
de Vente, C., van Ginneken, B., Hoyng, C. B., Klaver, C. C. W., & Sánchez, C. I. (2024). Uncertainty-aware multiple-instance learning for reliable classification: Application to optical coherence tomography. Medical Image Analysis, 97, Article 103259. https://doi.org/10.1016/j.media.2024.103259[details]
Álvarez-Rodríguez, L., Prego, I. G., de Moura, J., Pueyo, A., Vilades, E., Garcia-Martin, E., Sánchez, C. I., Novo, J., & Ortega, M. (2024). 3D Point Cloud Analysis via Transformer-Based Graph Learning for Multiple Sclerosis Screening in OCT Images. Procedia Computer Science, 246, 1080–1089. https://doi.org/10.1016/j.procs.2024.09.527[details]
González-Gonzalo, C., Thee, E. F., Klaver, C. C. W., Lee, A. Y., Schlingemann, R. O., Tufail, A., Verbraak, F., & Sánchez, C. I. (2022). Trustworthy AI: Closing the gap between development and integration of AI systems in ophthalmic practice. Progress in Retinal and Eye Research, 90, Article 101034. https://doi.org/10.1016/j.preteyeres.2021.101034[details]
Bortsova, G., González-Gonzalo, C., Wetstein, S. C., Dubost, F., Katramados, I., Hogeweg, L., Liefers, B., van Ginneken, B., Pluim, J. P. W., Veta, M., Sánchez, C. I., & de Bruijne, M. (2021). Adversarial attack vulnerability of medical image analysis systems: Unexplored factors. Medical Image Analysis, 73, Article 102141. https://doi.org/10.1016/j.media.2021.102141[details]
González-Gonzalo, C., Liefers, B., van Ginneken, B., & Sánchez, C. I. (2020). Iterative Augmentation of Visual Evidence for Weakly-Supervised Lesion Localization in Deep Interpretability Frameworks: Application to Color Fundus Images. IEEE Transactions on Medical Imaging, 39(11), 3499-3511. https://doi.org/10.1109/TMI.2020.2994463[details]
Lemij, H. G., de Vente, C., Sanchez, C., Cuadros, J., Jaccard, N., & Vermeer, K. (2022). Glaucomatous features in fundus photographs of eyes with 'Referable glaucoma' of a large population based labeled data set for training an Artificial Intelligence (AI) algorithm for glaucoma screening. Investigative Ophthalmology & Visual Science, 63(7).
Schwartz, R., Khalid, H., Liakopoulos, S., Ouyang, Y., de Vente, C., Gonzalo, C. G., Lee, A. Y., Egan, C. A., Sanchez, C., & Tufail, A. (2022). A deep learning pipeline for the detection and quantification of drusen and reticular pseudodrusen on optical coherence tomography. Investigative Ophthalmology & Visual Science, 63(7).
2021
Gonzalez-Gonzalo, C., Thee, E., Liefers, B., de Vente, C., Klaver, C., & Sanchez, C. (2021). Hierarchical curriculum learning for robust automated detection of low-prevalence retinal disease features: application to reticular pseudodrusen. Investigative Ophthalmology & Visual Science, 62(8).
de Vente, C., Gonzalez-Gonzalo, C., Thee, E. F., van Grinsven, M., Klaver, C. C. W., & Sanchez, C. I. (2021). Making AI Transferable Across OCT Scanners from Different Vendors. Investigative Ophthalmology & Visual Science, 62(8).
2025
de Vente, C. W. (2025). Towards robust deep learning for medical imaging: Applications in ophthalmology and radiology. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
de Vente, C., Vermeer, K. A., Jaccard, N., van Ginneken, B., Lemij, H. G. & Sánchez, C. I. (2021). Rotterdam EyePACS AIROGS train set - Part 2/2. Zenodo. https://doi.org/10.5281/zenodo.5745834
de Vente, C., Vermeer, K. A., Jaccard, N., van Ginneken, B., Lemij, H. G. & Sánchez, C. I. (2021). Rotterdam EyePACS AIROGS train set. Zenodo. https://doi.org/10.5281/zenodo.5793241
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.