Voor de beste ervaring schakelt u JavaScript in en gebruikt u een moderne browser!
Je gebruikt een niet-ondersteunde browser. Deze site kan er anders uitzien dan je verwacht.

N. (Niklas) Müller

Promovendus
Faculteit der Maatschappij- en Gedragswetenschappen
Programmagroep: Brain & Cognition
Expertisegebied: Computational Neuroscience, Visual Perception, Data Analysis, Deep Neural Networks
Fotograaf: Onbekend

Bezoekadres
  • Nieuwe Achtergracht 129
Postadres
  • Postbus 15915
    1001 NK Amsterdam
Contactgegevens
  • Profile

    I have a strong background in computational modelling. Using techniques from computer science and artificial intelligence I study perceptual processes in the human brain. I combine data from neuroimaging (EEG, neurophysiology, etc.) with behavioural measures (eye-tracking, response times, etc.) to build computational models of the dynamics neural dynamics of perceptual processes in the human (primate) brain.
    Specifically, during my PhD I will investigate the role of pre-cortical processes on visual perception. Introducing computations from pre-cortical structures into the training pipeline of deep convolutional neural network will probe the necessity of structures like the retina or the LGN for visual tasks like object recognition.

    Relevant links

    I am part of both, the Brain and Cognition Group at the Psychology institute as well as the VIS Lab at the Computer Science Institute.

  • Research

    Research methods

    • EEG
    • fMRI
    • Eye-Tracking
    • Computational Modelling / Deep Neural Networks

    Current research projects

    • Elucidating the core computational principles underlying visual recognition of natural scenes | Using EEG data we investigate the role of pre-cortical processing using deep neural networks
    • Eye-tracking during Inspection of Natural Image Scenes while Performing Cognitive Tasks | Eye movements recordings shed light on the information content of natural scenes. We investigate their merit in training a DCNN to perform visual tasks 
    • High-Quality Natural Scenes can Replace Careful Data Augmentation for Making DCNNs more Human-Like | Using high-quality natural images with biologically inspired processing might help DCNNs to be more human-like

    Current collaborations

  • Teaching & PhD Supervision
    • BA: Building Brains with AI
    • MA: Cognitive AI and Neural Networks
       
  • Publicaties

    2023

    • Müller, N., Groen, I. I. A., & Scholte, H. S. (2023). Pre-Training on High-Quality Natural Image Data Reduces DCNN Texture Bias. In CCN : Conference on Cognitive Computational Neuroscience: Oxford, UK, August 24-27, 2023 (pp. 371-374). CCN. https://doi.org/10.32470/CCN.2023.1294-0 [details]
    This list of publications is extracted from the UvA-Current Research Information System. Questions? Ask the library or the Pure staff of your faculty / institute. Log in to Pure to edit your publications. Log in to Personal Page Publication Selection tool to manage the visibility of your publications on this list.
  • Nevenwerkzaamheden
    Geen nevenwerkzaamheden